
Zen & the Art of External Watchdogs
A Watchdog is there to make sure that an unexpected program execution error is
handled; be that error an infinite loop, a panic to console or processor seizure.

Caveat Emptor - A Watchdog will not recover from an equipment failure, either in the
Watchdog itself or in the equipment it is watching or any errors you make. Also be
aware that with an external watchdog, escaping to the console will remove the Pat
the Dog and reset the Pico after the watchdog times out. You have been warned –
disable the watchdog if you’re working on the console and remember to enable it
again when you’re finished. More easily said than done J.

In order to placate the Watchdog one needs to Pat the Dog. In an embedded
controller setting this would be through a regular GPIO being driven temporarily to a
state which Pats the Dog to prevent it barking. The barking will reset the embedded
processor in some way resulting in a recovery from its non-responsive condition.

What one needs is an astable multivibrator, which is to say having a waveform
where the reset pulse is of short duration when compared to the balance of the
waveform. On the basis of the reset pulse being a low level pulse, the high pulse
duration will be >99% while the low level reset pulse will be very much shorter.
Something like this [from https://ohmslawcalculator.com/555-astable-calculator]

In the example circuit below [from
https://arduinodiy.wordpress.com/2017/09/08/arduino-watchdog-timer/], given that
the Dog has not been Patted, the high level period is of the order of 69s
[https://ohmslawcalculator.com/555-astable-calculator] and the low level reset pulse
of the order of 38ms. Bearing in mind the examples given so far relate to the Arduino
running on a 5V rail.

The [https://ohmslawcalculator.com/555-astable-calculator] 555 astable calculator
provides a convenient place to fiddle with the values.

For the Pico I’m using R1=330W, R2=1MW, R3=220W and C2=100µF. In the
calculator this yields the following (noting that for the calculator C=C2=100µF,
R1=R2=1MW and R2=R3=220W)

So from the calculator we have a time to reset of 69.315s and a reset pulse of
15.246ms.

In terms of the operation of the Pico the current sinking capability of ALL the GPIO
combined appears to be 50mA
[https://forums.raspberrypi.com/viewtopic.php?t=300735&sid=576b934db443f1ebb5
905ca008dd2e29&start=25]. In the Pico example of the circuit above R1=330W,
which according to Ohms Law will result in the GPIO pin having to carry the C2
discharge current of 3.3V/330W=11mA (instantaneous values) which is well within
the 50mA across ALL the GPIO. However your GPIO usage may be different.

The Pico clocked at 250MHz gives a 20-30µs low pulse [Thanks TassyJim
https://www.thebackshed.com/forum/ViewTopic.php?PID=209128#209128#209132]
with the following code snippet below;

 PIN(GP13) = 0
 DO
 SETPIN GP13,DOUT
 SETPIN GP13,DIN
 PAUSE 1

 LOOP

Consider the workings of the 555 timer in as far as the Trigger pin needs to rise
above 2/3rds Vcc in order for the astable output (pin 3) to toggle from its high state to
a low state to provide the low reset pulse, which is connected to the Pico RUN pin.

So the concept now is that the Pico GPIO is Patting the Dog as fast as it can, which
prevents the voltage from exceeding 2/3rds Vcc…but does it??? To discharge/keep
C2 below 2/3rds Vcc (2.2V assuming 3.3V VSYS) the Pat has to discharge C2 to
keep it below 2/3rds Vcc.

The most convenient approach is to look at the current flows through the charge and
discharge loops. These can be determined from the following formulae, assuming a
static approach when Ohm’s Law is applied;

Icharge = Vcc/(R2+R3); and [1]
Idischarge = Vtrigger/R1 [2]

Where Vcc=3.3V, Vtrigger=2.2V, R1=330W, R2=1MW and R3=220W we get

Icharge=3.3V/(1MW+220W)=3.2993µA; and [3]
Idiscarge=2.2V/330W=0.0067A [4]

So from first principles we need a small portion of Idischarge to offset the Icharge
portion. Assuming that Icharge occurs in 1 unit of time, then we need
3.2993µA/0.0067A=0.4949 milli units of discharge time.

Thus for 1s of Icharge we need to Idischarge for 0.4949ms. Let’s round this to 0.5ms
to facilitate the thinking below; bearing in mind that this is to achieve equilibrium and
not to discharge C2 towards its lowest value.

Clearly the more we Pat the Dog the more headroom we will have in terms of the
voltage rise across C2 approaching the 2/3rds Vcc trigger voltage.

In the example circuit above lets change R2=1MW to a variable 1MW resistor and
increase the Pause value to 500 in the code snippet, to simulate a scenario where
the program is delayed in returning to Pat the Dog.

Now measure the voltage between the ground rail and the positive side of C2. We
are aiming to increase the value of R2 such that the voltage on C2 does not exceed
the 2.2V trigger voltage, through Patting the Dog in a loop for long enough (very
quickly for a short duration Pat or less often with a longer duration Pat);
understanding that it won’t be zero but a value below 1volt measured with an
ordinary multimeter.

Clearly the best strategy is the judicious application of Patting the Dog sprinkled
throughout the code. By adjusting R2 we make the Icharge value less and give the
shorter but higher Idischarge the opportunity to discharge C2 faster than Icharge can

charge C2.

My coding practice is to make everything sub routines and wherever relevant
interrupt driven and reduce the Do Loop to an empty shell. With an external
watchdog insert the Pat the Dog sub routine call in the Do Loop as a minimum.
Consider Patting the Dog just before any long duration pieces of code, especially
anything related to the WEB Commands, just to be safe. Run the program and
monitor the voltage across C2. Increase R2 until you achieve the lowest possible
voltage across C2 if necessary.

Alternatively, using the circuit provided above, the watchdog timeout can be just over
60s and then live with the longer delay to reset; which will provide the greatest
tolerance to strange code behavior.

Best of luck
Carl 20230907 [rev 0]

